Preparation of Tetrahydroindolizines from Pyridinium and Isoquinolinium Ylides

\author{

Abstract

Carbonyl- and nitrile-stabilised pyridinium and cyclic azonium methylides condense with chalcones to form tetrahydroindolizines and analogous fused pyrrolidines. The stereochemistry is illuminated by ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Several incorrect literature structures are rectified.

}

Requiring efficient routes to substituted 2-pyridones, ${ }^{1}$ we were drawn to Thesing's ${ }^{2}$ synthesis of 4,6 -diphenyl-2-pyridone (2) (Scheme 1). Pyridinium carbamoylmethylide, generated in situ by treatment of the salt with base, was condensed with chalcone to give an intermediate, reported ${ }^{2}$ to have the structure (1), which was isolated and then cyclised in acid to the pyridone (2).

Scheme 1
We obtained the same yellow intermediate, m.p. 147$148{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $147-148{ }^{\circ} \mathrm{C}$). However, the n.m.r. spectrum excluded the ylide formulation (1) and strongly indicated the tetrahydroindolizine structure (3), as did the i.r. spectrum (see later discussion of spectra).

(3)

(5)

(4)

(6)

The tetrahydroindolizine (3) is formed by a 1,3 -dipolar cycloaddition ${ }^{3}$ of the pyridinium ylide: there are many examples of such reactions with olefinic and
acetylenic dipolarophiles in the literature, ${ }^{4-8}$ although it is usual for the primary adducts to undergo dehydrogenation to indolizines under the reaction conditions. Thus, Boekelheide and Fahrenholz ${ }^{4}$ treated pyridinium phenacylide with dimethyl acetylenedicarboxylate to give the indolizine (4; $\mathrm{R}^{1}=\mathrm{PhCO}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}$). A wide range of other ylides and alkynes have given analogous products of type (4) (e.g. ref. 5). Adducts from olefinic dipolarophiles frequently undergo loss of two hydrogens; thus, dihydroindolizines (5) result ${ }^{6}$ from pyridinium methoxycarbonylide with substituted acrylates. Pyridinium, quinolinium, and isoquinolinium phenacylides and acrylonitrile give isolable but readily dehydrogenated tetrahydroindolizines. ${ }^{7}$ Recently, Kröhnke has reported ${ }^{8}$ stable tetrahydroindolizines (6) from the reaction of pyridinium benzylide with chalcone, and similar adducts from isoquinolinium benzylide and fluorenylides of both heterocycles.

We have now investigated the reaction of several other carbonyl-, and nitrile-stabilised cyclic azonium methylides with chalcones. The cyclic azonium salts ($7 \mathrm{a}-\mathrm{h}$) and ($8 \mathrm{a}-\mathrm{g}$) (Table 1) were prepared by reaction of pyridine, picolines, isoquinoline, quinoline, and benzothiazole with active halogen compounds (chloroacetamide, ethyl bromoacetate, methyl chloroacetate, chloroacetonitrile, and phenacyl chloride). The cyclic N (alkoxycarbonylmethyl)azonium salts (7a), (7b), (7d), and (8a) reacted with $\alpha \beta$-unsaturated ketones to give the cycloadducts (9a-f), (10), (12a), and (13a-h) (Table 2). The pyridinium salt with chalcone and analogues rapidly deposits adducts ($9 \mathrm{a}-\mathrm{f}$) and (10) in high yields, but of the analogous picolinium salts ($7 \mathrm{~d}-\mathrm{f}$) only the chalcone adduct (12a) of the 2 -picolinium salts (7d) could be isolated. The corresponding isoquinolinium salts give adducts ($13 \mathrm{a}-\mathrm{h}$) in moderate to high yield with $\alpha \beta$ unsaturated ketones, including benzalacetone. The quinolinium salt (8e) was, however, inactive. The cyclic N-(carbamoylmethyl)azonium salts $(7 \mathrm{c}),(7 \mathrm{~g}-\mathrm{h})$, and (8 b) reacted with $\alpha \beta$-unsaturated ketones to give the adducts (11a-e), (12b and c), and (14a-e) (Table 3). The pyridinium and isoquinolinium salts (7c) and (8b) each react with chalcones in high yield. The 2- and 4picolinium salts (7 g and h) reacted more sluggishly with chalcones to give reduced yields of the crude adducts (12 b and c) which resisted purification and could not be satisfactorily characterised. The quinolinium and benzothiazolium salts (8 f and g) again gave no adducts.

The cyanomethylisoquinolinium salts (8c) reacted

Table 1
N-Substituted cyclic azonium salts

Salt	Heterocycle	Active halogen compound	Procedure	Yield (\%)	Cryst. form	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Lit. m. }}$	Lit. ref.	C		N	Hal	Formula	C	$\underset{\mathrm{H}}{\text { Requ }}$	$\underset{\mathbf{N}}{\mathrm{r}}$	Hal
(7a)	Pyridine	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(a)	92	Prisms	135-137	135-136	a									
(7b)	Pyridine	$\mathrm{ClCH}_{3} \mathrm{CO}_{2} \mathrm{Me}$	(b)	85	Plates	$\begin{aligned} & 178-180 \\ & \text { (decomp.) } \end{aligned}$	191	b	51.5	5.3	7.3	18.9	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	61.2	5.4	7.5	18.9
(7c)	Pyridine	$\mathrm{ClCH}_{2} \mathrm{CONH}_{2}$	(c)	95	Prisms	207-209	202-203	c									
(7i)	[${ }^{2} \mathrm{H}_{5}$] Pyridine	$\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	(b)	90	Prisms	180			50.3		7.3	18.4	$\mathrm{C}_{8} \mathrm{H}_{4}{ }^{2} \mathrm{H}_{6} \mathrm{ClNO}_{8}$	49.9		7.3	18.4
(7j)	[${ }^{2} \mathrm{H}_{5}$] Pyridine	$\mathrm{ClCH}_{3} \mathrm{CONH}_{2}$	(c)	95	Prisms	217-219			47.4		15.6	20.0	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{ClN}_{3} \mathrm{O}$	47.3		15.8	20.0
(7d)	2-Picoline	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(a)	75	Prisms	127-128	128	d									
(7g)	2-Picoline	$\mathrm{ClCH}_{2} \mathrm{CONH}_{2}$	(c)	95	Prisms	216-218			51.6	5.8	15.1	19.0	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}$	51.5	5.9	15.0	19.0
(7e)	3-Picoline	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(a)	88	Prisms	154-156			46.1	5.3	5.4	30.8	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO}_{3}$	46.2	5.4	5.4	30.8
(7f)	4-Picoline	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(a)	95	Plates	163-165			46.5	5.4	5.2	31.2	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrNO}_{2}$	46.2	5.4	5.4	30.8
(7h)	4-Picoline	$\mathrm{ClCH}_{2} \mathrm{CONH}_{2}$	(c)	98	Prisms	230-232			51.5	6.0	15.0	19.1	$\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$	51.5	5.9	15.0	19.0
(8a)	Isoquinoline	$\mathrm{BrCH}_{3} \mathrm{CO}_{2} \mathrm{Et}$	(a)	95	Prisms	${ }_{295}^{199}$	199	e									
(8b)	Isoquinoline	$\mathrm{ClCH}_{2} \mathrm{CONH}_{2}$	(c)	62	Prisms	235-236			59.0	5.2	12.5	16.0	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$	59.3	4.9	12.6	15.9 17.3
(8c)	Isoquinoline	$\mathrm{ClCH}_{3} \mathrm{CN}$	(d)	68	Prisms	214			64.5	4.4	13.6	17.4	$\mathrm{C}_{11} \mathrm{H}_{2} \mathrm{ClN}_{2}$	64.5	4.4	13.7	17.3
(8d)	Isoquinoline	$\mathrm{BrCH}_{3} \mathrm{COPh}$	(a)	98	Prisms	204	204-206	f									
(8e)	Quinoline	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	(a)	76	Prisms	180	180	g									
(8f)	Quinoline	$\mathrm{ClCH}_{2} \mathrm{CONH}_{3}$	(c)	40	Prisms	228-230			59.0	5.0	12.4	15.7	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$	59.3	4.9	12.6	15.9
(8g)	Benzothiazole	$\mathrm{ClCH}_{2} \mathrm{CONH}_{2}$	(c)	58	Prisms	220-222			47.3	3.9	12.1	15.5	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClN}_{8} \mathrm{OS}$	47.3	4.0	12.3	15.5

a F. Kröhnke, Ber., 1937, 70, 543. b N. N. Mel'nikov, N. D. Sukhareva, and O. P. Arkhipova, Zh. Prikl. Khim., 1947, 80, 642-8 (Chem. Abs., 1949, 48, 6976h). © A. H. Cook, J. Downer, and B. Hornung, J. Chem. Soc., 1941, 502 . d O. Westphal, K. Jann, and W. Heffe, Arch. Pharm. (Weinheim, Ger.), 1961 , 894,37 . © H. Ihlder, A rch. Pharm. (Weinheim, Ger.), 1902, 240, 505. fF. Kröhnke, Ber., 1935, 68, 1177. G. H. Ihlder, Arch. Pharm. (Weinheim, Ger.), 1902, 240, $517-518$.

Table 2
Adducts from cyclic N-(ethoxycarbonylmethyl)azonium salts ${ }^{a}$

$\alpha \beta$-Unsaturated ketone $\mathrm{Ar}^{1} \mathrm{COCH}=\mathbf{C H} \cdot \mathrm{Ar}^{2}$				Yield (\%)	Cryst. solvent			Found (\%)				Required (\%)		
Adduct	Heterocycle		Ar ${ }^{2}$			Cryst. form	M.p. $\left({ }^{\circ} \mathrm{C}\right)$		H	N	Formula	C	H	N
(9a)	Pyridine	Ph	Ph	90	EtOH	Yellow needles	104-105	77.0	6.5	3.7	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{8}$	77.2	6.2	3.8
(9b)	Pyridine	Ph	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	93	$\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$	Yellow microcrystals	118-120	70.9	5.3	3.3	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{ClNO}_{2} 6$	70.7	5.4	3.4
(9c)	Pyridine	Ph	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	66	EtOH	Yellow needles	105-106	77.6	6.7	3.4	$\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{NO}_{2}$	77.5	6.5	3.6
(9d)	Pyridine	2-F c	Ph	72	EtOH	Yellow prisms	94-96	69.2	6.1	3.6	$\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ d	69.3	6.1	3.7
(9e)	Pyridine	$p-\mathrm{ClC}_{8} \mathrm{H}_{4}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	80	EtOH	Yellow prisms	93-95	65.0	4.7	3.0	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{4}{ }^{\circ}$	65.1	4.8	3.2
(9f)	Pyridine	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$p-\mathrm{MeC}_{8} \mathrm{H}_{4}$	87	EtOH-H2O	Yellow microcrystals	$\begin{gathered} 97-99 \\ \text { (decomp.) } \end{gathered}$	77.8	6.8	3.4	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2}$	77.8	6.8	3.5
(10)	Pyridine f	Ph	Ph	90	MeOH	Yellow needles	91-92	76.8	5.7	3.8	$\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{2}$	76.9	5.9	3.9
(12a)	2-Picoline	Ph	Ph	70	EtOH	Yellow needles	103-104	77.1	6.4	3.5	$\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{2}$	77.5	6.5	3.6
(13a)	Isoquinoline	Me	Ph	75	$\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{3} \mathrm{O}$	Yellow prisms	120	76.4	6.4	3.7	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}_{8}$	76.4	6.4	3.9
(13b)	Isoquinoline	Ph	Ph	65	EtOAc	Yellow needles	138	79.2	5.9	3.3	$\mathrm{C}_{88} \mathrm{H}_{38} \mathrm{NO}_{2}$	79.4	6.0	3.3
(13c)	Isoquinoline	$\mathrm{Ph}^{\mathrm{Ph}}$	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	78	$\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	109	76.5	5.9	3.0	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{4}$	76.8	6.0	3.1
(13d)	Isoquinoline	Ph	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	55	$\mathrm{Me}_{3} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	136	71.8	5.0	5.9	$\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}$	71.8	5.2	6.0
(13e)	Isoquinoline	Ph	2-Fe ${ }^{\text {- }}$	44	$\mathrm{Me}_{3} \mathrm{CO}-\mathrm{H}_{3} \mathrm{O}$	Yellow prisms	114	76.0	5.7	3.3	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{4}$	75.5	5.6	3.4
(135)	Isoquinoline	2-T	Ph	87	$\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	138	72.8	5.4	3.2	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S} h$	72.7	5.4	3.3
(138)	Isoquinoline	$p-\mathrm{ClC}_{8} \mathrm{H}_{4}$	$p-\mathrm{ClC}_{8} \mathrm{H}_{4}$	33	$\mathrm{Me}_{3} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	128	68.4	4.8	2.8	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{NO}_{8} 1$	68.3	4.7	2.8
(13h)	Isoquinoline	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$p-\mathrm{MeC}_{8} \mathrm{H}_{4}$	67	EtOH	Yellow plates	139	79.6	6.4	3.0		79.8	6.5	3.1
(16a)	[${ }^{2} \mathrm{H}_{5}$]Pyridine f	Ph	Ph	90	MeOH	Yellow needies	87-88	75.7		3.8	$\mathrm{C}_{38} \mathrm{H}_{18}{ }^{2} \mathrm{H}_{6} \mathrm{NO}_{2}$	75.8		3.8

a Prepared by general method (a). b Found: $\mathrm{Cl}, 8.8$. Required: $\mathrm{Cl}, 8.7 \%$. $\boldsymbol{c} 2 \mathbf{2 - F}=\mathbf{2 - F u r y l}$. d Hygroscopic, $\mathrm{H}_{3} \mathrm{O}$ seen in spectra. \quad Found: Cl , $\mathbf{1 6 . 3}$. Required:

TAble 3
Adducts from cyclic 1-(carbamoylmethyl)azonium salts ${ }^{a}$

		$\alpha \beta$-Unsaturated ketone $\mathrm{R}^{1} \mathrm{COCH}=\mathrm{CHR}^{\text { }}$		Yield	Cryst. solvent		Found					Required		
Adduct	Heterocycle	R^{1}	$\mathrm{R}^{\text {2 }}$	(\%)		Cryst. form	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	C	H	N	Formula	C	H	N
(11a)	Pyridine	Ph	Ph	90	$\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	147-148 ${ }^{\text {b }}$	76.4	6.1	8.1	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}$	76.7	5.9	8.1
(11b)	Pyridine	Ph	$p-\mathrm{ClC}_{4} \mathrm{H}_{4}$	74	EtOH	Yellow prisms	145-146	69.6	5.0	7.3	$\mathrm{C}_{3} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{C}$	69.7	5.1	7.4
(11c)	Pyridine	2-Furyl	Ph	70	EtOH	Yellow prisms	139-140			8.0	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$			8.4
(11d)	Pyridine	$p-\mathrm{ClC}_{8} \mathrm{H}_{4}$	$p \cdot \mathrm{CIC}_{6} \mathrm{H}_{4}$	70	EtOH	Yellow plates	146-147	64.1	4.4	6.7	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{\text {d }}$	63.9	4.4	6.8
(11e)	Pyridine	$p-\mathrm{MeC}_{3} \mathrm{H}_{4}$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	86	EtOH	Yellow plates	146-147	77.4	6.6	7.5	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{2}$	77.4	6.5	7.5
(14a)	Isoquinoline	Ph	Ph	90	EtOH-H3O	Yellow microcrystals	110-112	79.1	0.6	6.6	$\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$	79.2	5.6	7.1
(14b)	Isoquinoline	Ph	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	90	EtOH	Flat yellow needles	151-152.5	71.0	5.7	5.9	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{ClN}_{3} \mathrm{O}_{2} \\ & \text { EtOH } \end{aligned}$	70.8	5.7	5.9
(140)	Isoquinoline	2-Furyl	Ph	90	EtOH	Yellow needles	186-187			6.3	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}$			7.3
(14d)	Isoquinoline	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	90	EtOH	Yellow needles	165-187	67.1	4.3	6.0	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{f}$	67.4	4.4	6.0
(14e)	Isoquinoline	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	90	$\mathrm{McOH}-\mathrm{H}_{2} \mathrm{O}$	Yellow microcrystals	105-108	79.0	6.2		$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9} \\ +\mathrm{H}_{8} \mathrm{O} \end{gathered}$	78.8	6.3	
(16b)	[${ }^{2} \mathrm{H}_{5}$]Pyridine	Ph	Ph	90	$\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	Yellow prisms	155-157	75.6		7.9	$\mathrm{C}_{38} \mathrm{H}_{15}{ }^{2} \mathrm{H}_{6} \mathrm{~N}_{8} \mathrm{O}_{2}$	75.6		8.0

Table 4
Adducts from 1-(cyanomethyl)isoquinolinium salts ${ }^{a}$

Adduct$(15 a)$	$\alpha \beta$-Unsaturated ketone$\mathrm{R}^{1} \mathrm{COCH}=\mathrm{CHR}^{2}$		Yield	Cryst. form ${ }^{\text {b }}$	$\text { M.p. }\left({ }^{\circ} \mathrm{C}\right)$$165$	Found				Required		
	R^{1}	R^{2}				C	H	N	Formula	C	H	N
	Me	Ph	4	White microcrystals	165	77.8	5.5	8.7	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	80.2	5.8	8.9
(15b)	$B u^{t}$	Ph	34	White needles	147	81.0	6.8	7.9	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$	80.9	6.8	7.9
(15c)	Ph	Ph	42	Yellow microcrystals	184-185			7.4	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$			7.4
(15d)	Ph	$p-\mathrm{MeOC}_{8} \mathrm{H}_{4}$	47	Yellow plates	67	79.8	5.3	6.9	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$	79.8	5.5	6.9
(15e)	Ph	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	52	Yellow needles	190	74.1	4.4		$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$	74.1	4.5	

a Prepared by general method (c). ${ }^{\text {b }}$ From EtOH.
with $\alpha \beta$-unsaturated ketones to give the adducts ($15 \mathrm{a}-\mathrm{e}$) in moderate to low yield (Table 4). Salts (7 i and j) were formed by reaction of pentadeuteriated pyridine with methyl chloroacetate and with chloroacetamide. Reactions of these salts with chalcone gave

(7) a; $R=\mathrm{H}, \mathrm{Z}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
b; $R=\mathrm{H}, \mathrm{Z}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{Cl}$
c: $R=H, Z=C O N H_{2}, X=C l$
$\mathrm{d}: \mathrm{R}=2-\mathrm{Me}, Z=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
$\mathrm{e} ; \mathrm{R}=3-\mathrm{Me}, Z=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
$f: R=4-\mathrm{Me}, Z=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
g; $R=2-\mathrm{Me}, Z=\mathrm{CONH}_{2}, X=\mathrm{Cl}$
$h ; R=4-\mathrm{Me}, Z=\mathrm{CONH}_{2}, X=\mathrm{Cl}$
$i ; R=2,3,4,5,6-$ pent $a-^{2} \mathrm{H}, \mathrm{Z}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{Cl}$
$j ; R=2,3,4,5,6-$ penta ${ }^{2} \mathrm{H}, \mathrm{Z}=\mathrm{CONH}_{2}, X=\mathrm{Cl}$
the expected adducts ($\mathbf{1 6 a}$ and b), in which the deuterium label was fully retained.

Spectra of the Tetrahydroindolizines.-The i.r. and n.m.r. spectra of the adducts ($9 \mathrm{a}-\mathrm{f}$), (10), ($11 \mathrm{a}-\mathrm{e}$), (12 a), and (16 a and b) derived from pyridinium salts are

(B) a ; Ring = isoquinolinium, $\mathrm{Z}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
b; Ring = isoquinolinium, $\mathrm{Z}=\mathrm{CONH}_{2}, \mathrm{X}=\mathrm{Cl}$
ci Ring = isoquinolinium, $Z=C N, X=C l$
d; Ring = isoquinolinium, $Z=C O P h, X=B r$
e: Ring = quinolinium, $Z=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Br}$
$f ;$ Ring = quinolinium, $Z=\mathrm{CONH}_{2}, X=\mathrm{Cl}$
g:Ring = benzothiazolium, $Z=\mathrm{CONH}_{2}, X=\mathrm{Cl}$
(9) $a ; R^{1}=R^{2}=P h$
b: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c: $R^{1}=P h, R^{2}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$
d: $R^{1}=2$ - Furyl,$R^{2}=P h$
$e: R^{1}=R^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
$f: R^{1}=R^{2}=\rho-\mathrm{MeC}_{6} \mathrm{H}_{4}$

(10) $a: R^{\prime}=H, R^{2}=P h$
b: $R^{1}=P h, R^{2}=H$
(11) $a ; R^{1}=R^{2}=P h$
(12) $a ; R^{1}=M e, R^{2}=H, Y=O E t$
b; $R^{1}=P h . R^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}$
b; $R^{1}=M e, R^{2}=H, Y=N H_{2}$
c; $R^{1}=2$ - Furyl, $R^{2}=P h$
c: $R^{1}=H, R^{2}=M e, Y=N H_{2}$
$d ; R^{1}=R^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}$
e; $R^{1}=R^{2}=\rho-\mathrm{MeC}_{6} \mathrm{H}_{4}$

(13) $a ; R^{1}=M e, R^{2}=P h$
b; $R^{1}=R^{2}=P h$
c: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\rho-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

(14) $a ; R^{1}=R^{2}=P h$

$$
\mathrm{b}: \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$

c; $R^{1}=2-$ Furyl, $R^{2}=P h$
$d: R^{1}=P h, R^{2}=\rho-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
d; $R^{1}=R^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{6}$
e: $R^{1}=R^{2}=\rho-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(15) $a ; R^{1}=M e \cdot R^{2}=P h$
b : $R^{1}=B u^{\dagger}, R^{2}=P h$
c; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$
d; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\rho-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

e: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\rho-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
f; $\mathrm{R}^{1}=2$ - Thienyl, $\mathrm{R}^{2}=\mathrm{Ph}$
$g: R^{1}=R^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}$
$h: R^{1}=R^{2}=\rho-\mathrm{MeC}_{6} \mathrm{H}_{4}$
Table 5

Table 6
I.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra of adducts (9) derived from isoquinolinium salts

given in Table 5, and of those (13a-h), (14a-e), and ($15 \mathrm{a}-\mathrm{e}$) from isoquinolinium salts in Table 6. All adducts (9)-(16) had a strong ketone $v(\mathrm{C}=\mathrm{O}) 1640$ $1715 \mathrm{~cm}^{-1}$: the methyl ketones gave rise to highest values of $v(\mathrm{C}=\mathrm{O})$, and the highly conjugated furyl and thienyl ketones to the lowest. The ester adducts $(9 \mathrm{a}-\mathrm{e}),(10)$, (12 a), and ($13 \mathrm{a}-\mathrm{h}$) had also an ester $v(\mathrm{C}=0) 1735-1750 \mathrm{~cm}^{-1}$, whilst the amides (11a-e) and (14a-e) had an amide $v(\mathrm{C}=\mathrm{O}) 1660-1680$ and variable $v\left(\mathrm{NH}_{2}\right) 3100-3500 \mathrm{~cm}^{-1}$, and the nitrile adducts ($15 \mathrm{a}-\mathrm{e}$) had $v(\mathrm{C} \equiv \mathrm{N}) 2250 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the adducts (9)-(12) from pyridinium salts were assigned on the basis of the 220 MHz spectrum of the methyl ester adduct with chalcone (10). The phenyl protons gave a 8 H multiplet at δ $7.2-7.6$ and a 2 H doublet at $\delta 7.81$, whilst the $\mathrm{CO}_{2} \mathrm{Me}$ gave a 3 H singlet at $\delta \mathbf{3 . 7 9}$. $3-\mathrm{H}$ and $5-\mathrm{H}$, each having only one CH neighbour, gave doublets, all other protons giving double doublets. Deshielding by N caused $5-\mathrm{H}$ and $7-\mathrm{H}$ to appear at lowest field, $\delta 6.10$ and 5.89 . The signals from $6-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}$ overlapped, but were distinguishable. The olefinic coupling constants $J_{5,6}$, $J_{6.7}, J_{7.8}$, respectively $7,5.5$, and 9.5 Hz , are normal values. Long range coupling, $J_{5,7} \approx J_{5,8} \approx J_{6.8} \approx$ $J_{6,8 \mathrm{a}} \approx 1 \mathrm{~Hz}$, caused the signals of $5,7,8-\mathrm{H}$ to be split into fine triplets, and those of $6,8 \mathrm{a}-\mathrm{H}$ into fine doublets. The small $J_{8,8 u}(3 \mathrm{~Hz})$ is a consequence of the constraint of $8 \mathrm{a}-\mathrm{H}$ away from the plane of the diene.

Although the large $J_{1,2}(9 \mathrm{~Hz})$ could indicate structure (10a) in which $1-\mathrm{H}$ is cis to $2-\mathrm{H}$, it is more likely that the phenyl and phenacyl substituents of the dipolarophile remain trans to each other in the adduct as in structure (10b). In (10b), steric repulsions between the phenyl groups probably keep the dihedral angle of the protons $1-\mathrm{H}$ and $2-\mathrm{H}$ near 180°, giving rise to a large vicinal coupling.

The off-resonance ${ }^{13} \mathrm{C}$ n.m.r. spectrum of (10) provided additional confirmation of the tetrahydroindolizine structure. The ketone and ester carbonyls gave singlets at $\delta 197.9$ and 172.1 respectively, the quaternary aro-
matic carbons appeared as singlets at $\delta 141.1$ and 137.4, and the remaining aromatic carbons as a series of doublets between $\delta 133.3$ and 127.3 p.p.m. The olefinic carbons $\mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8$, and C-6 appeared respectively as doublets at $\delta 135.2,124.1,115.0$, and 95.7 , whilst the aliphatic carbons C-8a, C-3, C-1, and C-2 gave higher field doublets at $\delta 72.8,64.7,62.4$, and 49.7 , and the methyl carbon resonated as a quartet at $\delta 52.4$ p.p.m. The pentadeuteriated adduct (16a) gave a ${ }^{1} \mathrm{H}$ n.m.r. spectrum which contained only the aromatic and methyl signals, plus $3-\mathrm{H}$ (a 6 Hz doublet), $1-\mathrm{H}$ (a 9 Hz doublet), and $2-\mathrm{H}$ (a 6 and 9 Hz double doublet), thus confirming the assignment of these protons in adduct (10).
In the spectrum of the corresponding amide adduct (11a) (Thesing's intermediate) $2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}$, and 8 -H gave signals almost identical to those of (10), but $6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}$, and $1-\mathrm{H}$ were obscured by mutual overlap. The pentadeuteriated amide adduct ($\mathbf{1 6 b}$) showed $1-\mathrm{H}$ as a 9 Hz doublet, and $2-\mathrm{H}$ and $3-\mathrm{H}$ as a doublet and double doublet respectively, confirming that the amide adduct had an analogous structure to the ester (10). All the other adducts (9) and (11) also gave similar δ and J values (Table 5), indicating their common regio- and stereo-chemistry. The adduct (12a) from the 2 -picolinium salt (7d) gave a spectrum from which the $5-\mathrm{H}$ signal was absent.
The ester, amide, and nitrile adducts ($13 \mathrm{a}-\mathrm{h}$), ($14 \mathrm{a}-\mathrm{e}$), and ($15 \mathrm{a}-\mathrm{e}$) derived from isoquinolinium salts all gave similar ${ }^{1} \mathrm{H}$ n.m.r. spectra, in which the isolated vinyl protons $5-\mathrm{H}$ and $6-\mathrm{H}$ gave low field doublets at $\delta 6.4$ and $5.6\left(J_{5.6} 7-8 \mathrm{~Hz}\right) ; 3-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}$ appeared at $\delta 4.4$ and 5.2 (as $9-10 \mathrm{~Hz}$ doublets). In this series, $J_{1.2}$ varied between 6 and 10 Hz , thus giving 1-H and $2-\mathrm{H}$ as either triplets or double doublets, at $\delta 4.6$ and 3.9. The chemical shifts and coupling constants in the pyrrolidine ring of adducts (13)-(15) are very similar to those of adducts (9)-(11), indicating a similar regioand stereo-chemistry of addition to the isoquinolinium ylides, as to the pyridinium ones.

The mass spectra of adducts (9a) and (11a) showed
weak molecular ions (1%), with larger peaks at $M-2$ (8%) and $M-4(10 \%)$, resulting from dehydrogenations to the dihydroindolizine and indolizine. The base peaks were $77\left(\mathrm{Ph}^{+}\right)$or $105\left(\mathrm{PhCO}^{+}\right)$, and ions at $m / e 207$ and 208 (chalcone) were prominent, indicating retro-cycloaddition to be the major fragmentation pathway.

Other Examples in the Literature.-The reaction of 2phenacylisoquinolinium bromide (8 d) with chalcone and sodium hydroxide is reported ${ }^{9}$ to give an ylide analogous to (1). We have found that the spectra of this compound (Table 6) are, however, in accord with the structure ($\mathbf{1 7}$). In this adduct $3-\mathrm{H}$ resonates at 1 p.p.m. lower field than in (13)-(15): all other signals are similar. We would similarly expect the ylide reported ${ }^{10}$ to arise from the reaction of 1 -(carbamoylmethyl)pyridinium chloride with 4 -picolylideneacetophenone and sodium hydroxide to be of the structural type (11).

(17)

Mechanism of Formation of Tetrahydroindolizines.The adducts (9)—(17) could possibly be formed by a concerted cycloaddition, ${ }^{3}$ but it is more probable that the carbonyl-stabilised cyclic azonium methylide undergoes a Michael addition onto the chalcone, giving a reactive enolate (18), which rapidly ring-closes onto the heterocyclic ring to give the bicyclic adduct (Scheme 2). This is in agreement with the observed regiospecificity of addition, and the acid-base mediated interconversion with the open-chain salt which has been reported ${ }^{8}$ for similar tetrahydroindolizines.

(18)

Scheme 2

EXPERIMENTAL

M.p.s were determined with a Reichert apparatus. Spectra were recorded with a Perkin-Elmer 297 grating spectrophotometer, a Kratos MS 25 mass spectrometer, and a Varian HA-100 (100 MHz) n.m.r. spectrometer. The

220 MHz n.m.r. spectrum was obtained from the PCMU, Harwell.

General Procedures for Preparation of Cyclic Azonium Salts.-(a) The heterocycle (0.2 mol), α-bromocarbonyl compound (0.2 mol), and EtOAc (25 ml) were stirred together and left overnight, and the salt was filtered off as a white powder which was crystallised from ethanol.
(b) The heterocycle (0.2 mol), methyl chloroacetate (0.2 mol), and EtOAc (50 ml) were heated at $80^{\circ} \mathrm{C}$ for 20 h . The salt was filtered off as a white powder, and crystallised from EtOH .
(c) The heterocycle (0.2 mol), chloroacetamide (0.2 mol), and $\mathrm{MeCN}(20 \mathrm{~g})$ were heated together at $80^{\circ} \mathrm{C}$ for 48 h . The salt was filtered off as a white powder, which was crystallised from EtOH .
(d) The heterocycle (0.2 mol), chloroacetonitrile (0.2 mol), and $\mathrm{Me}_{2} \mathrm{CO}(50 \mathrm{ml})$ were heated under reflux for 4 h . The salt was filtered off as a white powder, which was crystallised from EtOH .
General Procedures for Preparation of Tetrahydroindoli-zines.-(a) The cyclic N-(alkoxycarbonylmethyl)azonium salt (10 mmol), and the $\alpha \beta$-unsaturated ketone (10 mmol) were dissolved together in the alcohol corresponding to the ester function in the salt (30 ml), at $25-60^{\circ} \mathrm{C}$ and a solution of sodium (10 mmol) in the same alcohol (5 ml) added. The solution became orange and the product crystallised rapidly, especially after seeding. After 30 min , water (10 ml) was added to remove inorganic salts, and the adduct filtered off to give yellow microcrystals which were washed with water $(10 \mathrm{ml})$.
(b) the N-(aminoformylmethyl)azonium salt (10 mmol) and the $\alpha \beta$-unsaturated ketone (10 mmol) were dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$ and 1 m aqueous $\mathrm{NaOH}(10 \mathrm{ml})$ was added. Further water was added and the precipitate scratched as required to produce the crystalline adduct as a yellow powder. The adducts were crystallised from EtOH.
(c) To a stirred suspension of 1-(cyanomethyl)isoquinolinium chloride (2.5 mmol) and the $\alpha \beta$-unsaturated ketone (2.5 mmol) in EtOH (15 ml) at $25^{\circ} \mathrm{C}$ was added dropwise 1 M aqueous $\mathrm{NaOH}(2.5 \mathrm{mmol})$, and the resulting solution stirred for 2 h . Water (4 ml) was added and the adduct filtered off a yellow powder, which was purified by chromatography on alumina ($\mathrm{Me}_{2} \mathrm{CO}$).

1,3-Dibenzoyl-1,2,3,10b-tetrahydro-2-phenyibenzo[g]-
indolizine (17).-2-Phenacylisoquinolinium bromide was condensed with chalcone as described ${ }^{9}$ to give the adduct as small yellow needles, m.p. $154-156{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2} 154-156$ ${ }^{\circ} \mathrm{C}$).
[0/1089 Received, 10th July, 1980]

REFERENCES

${ }^{1}$ A. R. Katritzky, J. Arrowsmith, Zakaria bin Bahari, C. Jayaram, T. Siddiqui, and S. Vassilatos, J. Chem. Soc., Perkin Trans. 1, 1980, 285.
${ }^{2}$ J. Thesing and A. Müller, Chem. Ber., 1957, 90, 711.
${ }^{3}$ R. Huisgen, Angew. Chem., 1963, 75, 604.
4 V. Boekelheide and K. Fahrenholtz, J. Am. Chem. Soc., 1961, 83, 458.
${ }^{5}$ C. A. Henrick, E. Ritchie, and W. C. Taylor, Aust. J. Chem., 1967, 20, 2467.
${ }^{6}$ A. Kakehi and S. Ito, Bull. Chem. Soc. Jpn., 1974, 47, 938.
7 J. Fröhlich and F. Kröhnke, Chem. Ber., 1971, 104, 1621.

* J. Curtze, R. Dach, K. H. Duchardt, and F. Kröhnke, Chem. Ber., $1979,112,2197$.

9 W. Zecher and F. Kröhnke, Chem. Ber., 1961, 94, 690.
${ }^{10}$ F. Kröhnke, K.-E. Schnalke, and W. Zecher, Chem. Ber., 1970, 103, 322.

