Preparation of Tetrahydroindolizines from Pyridinium and Isoquinolinium Ylides

By Alan R. Katritzky,* Nicholas E. Grzeskowiak, and Julio Alvarez-Builla, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

Carbonyl- and nitrile-stabilised pyridinium and cyclic azonium methylides condense with chalcones to form tetrahydroindolizines and analogous fused pyrrolidines. The stereochemistry is illuminated by ¹³C and ¹H n.m.r. spectroscopy. Several incorrect literature structures are rectified.

REQUIRING efficient routes to substituted 2-pyridones,¹ we were drawn to Thesing's ² synthesis of 4,6-diphenyl-2-pyridone (2) (Scheme 1). Pyridinium carbamoylmethylide, generated *in situ* by treatment of the salt with base, was condensed with chalcone to give an intermediate, reported ² to have the structure (1), which was isolated and then cyclised in acid to the pyridone (2).

We obtained the same yellow intermediate, m.p. 147— 148 °C (lit.,² m.p. 147—148 °C). However, the n.m.r. spectrum excluded the ylide formulation (1) and strongly indicated the tetrahydroindolizine structure (3), as did the i.r. spectrum (see later discussion of spectra).

The tetrahydroindolizine (3) is formed by a 1,3-dipolar cycloaddition ³ of the pyridinium ylide: there are many examples of such reactions with olefinic and

acetylenic dipolarophiles in the literature,⁴⁻⁸ although it is usual for the primary adducts to undergo dehydrogenation to indolizines under the reaction conditions. Thus, Boekelheide and Fahrenholz⁴ treated pyridinium phenacylide with dimethyl acetylenedicarboxylate to give the indolizine (4; $R^1 = PhCO, R^2 = R^3 = CO_2Me$). A wide range of other ylides and alkynes have given analogous products of type (4) (e.g. ref. 5). Adducts from olefinic dipolarophiles frequently undergo loss of two hydrogens; thus, dihydroindolizines (5) result ⁶ from pyridinium methoxycarbonylide with substituted acrylates. Pyridinium, quinolinium, and isoquinolinium phenacylides and acrylonitrile give isolable but readily dehydrogenated tetrahydroindolizines.7 Recently, Kröhnke has reported⁸ stable tetrahydroindolizines (6) from the reaction of pyridinium benzylide with chalcone, and similar adducts from isoquinolinium benzylide and fluorenylides of both heterocycles.

We have now investigated the reaction of several other carbonyl-, and nitrile-stabilised cyclic azonium methylides with chalcones. The cyclic azonium salts (7a-h) and (8a-g) (Table 1) were prepared by reaction of pyridine, picolines, isoquinoline, quinoline, and benzothiazole with active halogen compounds (chloroacetamide, ethyl bromoacetate, methyl chloroacetate, chloroacetonitrile, and phenacyl chloride). The cyclic N-(alkoxycarbonylmethyl)azonium salts (7a), (7b), (7d), and (8a) reacted with $\alpha\beta$ -unsaturated ketones to give the cycloadducts (9a-f), (10), (12a), and (13a-h) (Table 2). The pyridinium salt with chalcone and analogues rapidly deposits adducts (9a-f) and (10) in high yields, but of the analogous picolinium salts (7d-f) only the chalcone adduct (12a) of the 2-picolinium salts (7d) could be isolated. The corresponding isoquinolinium salts give adducts (13a—h) in moderate to high yield with $\alpha\beta$ unsaturated ketones, including benzalacetone. The quinolinium salt (8e) was, however, inactive. The cyclic N-(carbamoylmethyl)azonium salts (7c), (7g-h), and (8b) reacted with $\alpha\beta$ -unsaturated ketones to give the adducts (11a-e), (12b and c), and (14a-e) (Table 3). The pyridinium and isoquinolinium salts (7c) and (8b) each react with chalcones in high yield. The 2- and 4picolinium salts (7g and h) reacted more sluggishly with chalcones to give reduced yields of the crude adducts (12b and c) which resisted purification and could not be satisfactorily characterised. The quinolinium and benzothiazolium salts (8f and g) again gave no adducts.

The cyanomethylisoquinolinium salts (8c) reacted

N-Substituted cyclic azonium salts

							-										
Salt	Heterocycle	Active halogen compound	Pro- cedure	Yield (%)	Cryst. form	М.р. (°С)	Lit.m.p. (°C)	Lit. ref.	с	Fou H	nd N	Hal	Formula	с	Requ H	ired N	Hal
(7a)	Pyridine	BrCH.CO.Et	(a)	92	Prisms	135137	135 - 136	a									
(7b)	Pyridine	CICH ₂ CO ₂ Me	(b)	85	Plates	178180 (decomp.)	191	b	51.5	5.3	7.3	18.9	C ₂ H ₁₀ CINO ₂	51. 2	5.4	7.5	18.9
(7c)	Pyridine	CICH.CONH.	(c)	95	Prisms	207209	202 - 203	C									
(7i)	[[*] H ₅]Pyridine	CICH CO.Me	(b)	90	Prisms	180			50.3		7.3	18.4	C.H. H.CINO.	49.9		7.3	18.4
122	Diseline	D-CH CO EA		90	Prisms	217219 197 199	199		47.4		19.0	20.0	C7n4n8cm30	47.0		10.0	#0.0
(7g)	2-Picoline	CICH ₂ CONH ₂	(a) (c)	95	Prisms	216 - 218	120	4	51.6	5.8	15.1	19.0	C ₈ H ₁₁ ClN ₈ O	51.5	5.9	15.0	19.0
(7e)	3-Picoline	BrCH,CO,Et	(a)	88	Prisms	154 - 156			46.1	5.3	5.4	30.8	C ₁₀ H ₁₄ BrNO ₃	46.2	5.4	5.4	30.8
(7f)	4-Picoline	BrCH,CO,Et	(a)	95	Plates	163165			46.5	5.4	5.2	31.2	C ₁₀ H ₁₆ BrNO ₃	46.2	5.4	5.4	30.8
(7h)	4-Picoline	CICH, CONH,	(c)	98	Prisms	230 - 232			51.5	6.0	15.0	19.1	C, H ₁₁ CIN, O	51.5	5.9	15.0	19.0
(8a)	Isoquinoline	BrCH,CO,Et	(a)	95	Prisms	199	199	e									
(8b)	Isoquinoline	CICH, CONH,	(c)	62	Prisms	235 - 236			59 .0	5.2	12.5	16 .0	C ₁₁ H ₁₁ ClN ₂ O	59.3	4.9	12.6	15.9
(8c)	Isoquinoline	CICH,CN	(d)	68	Prisms	214			64.5	4.4	13.6	17.4	C ₁₁ H ₂ CIN ₂	64.5	4.4	13.7	17.3
(8d)	Isoquinoline	BrCH,COPh	(a)	98	Prisms	204	204-206	f									
(8e)	Quinoline	BrCH,CO,Et	(a)	76	Prisms	180	180	g									
(8f)	Quinoline	CICH,CONH,	(c)	40	Prisms	228 - 230		-	59.0	5.0	12.4	15.7	C ₁₁ H ₁₁ CIN ₂ O	59.3	4.9	12.6	15.9
(8g)	Benzothiazole	CICH, CONH,	(c)	58	Prisms	220 - 222			47.3	3.9	12.1	15.5	C,H,CIN,OS	47.3	4.0	12.3	15.5
_	E Mathelia Da	1027 80 542 1	NT NT M.	12-11	M D C.J	hammen and (71	Duihi	Vhim	1047	00 049	Q/Cham Aba	1040 4	0 407	Ch)	• A 11

• F. Kröhnke, Ber., 1937, 70, 543. b. N. N. Mel'nikov, N. D. Sukhareva, and O. P. Arkhipova, Zh. Prikl. Khim., 1947, 20, 642-8 (Chem. Abs., 1949, 43, 6976h). • A. H. Cook, J. Downer, and B. Hornung, J. Chem. Soc., 1941, 502. d. O. Westphal, K. Jann, and W. Heffe, Arch. Pharm. (Weinheim, Ger.), 1961, 294, 37. • H. Ihlder, Arch. Pharm. (Weinheim, Ger.), 1902, 240, 505. f. Kröhnke, Ber., 1935, 68, 1177. • H. Ihlder, Arch. Pharm. (Weinheim, Ger.), 1902, 240, 517-518.

TABLE 2

Adducts from cyclic N-(ethoxycarbonylmethyl)azonium salts ^a

					· ·									
Adduct	Heterocycle	αβ-Unsat Ar ¹ CO Ar ¹	urated ketone CH=CH·Ar ³ Ar ³	Yield (%)	Cryst. solvent	Cryst. form	М.р. (°С)	For C	und (9 H	%) N	Formula	Requ C	ired (H	%) N
(92)	Puridine	Ph	Ph	90	FtOH	Vellow needles	104	77.0	8.5	37	C. H. NO.	77 2	6 2	38
(9b)	Pyridine	Ph	p-CIC _e H _e	93	EtOH-H ₂ O	Yellow	118-120	70.9	5.3	3.3	Cat HasCINOs b	70.7	5.4	3.4
(9c)	Pyridine	Ph	p-MeC.H.	66	EtOH	Yellow needles	105 - 106	77.6	6.7	3.4	C.,H.,NO,	77.5	6.5	3.6
(9d)	Pyridine	2-F ¢	Ph	72	EtOH	Yellow prisms	9496	69.2	6.1	3.6	C.H.NO.H.Od	69.3	6.1	3.7
(9e)	Pyridine	p-CIC _a H _a	p-CIC _a H _a	80	EtOH	Yellow prisms	9395	65.0	4.7	3.0	C ₃₄ H ₃₁ Cl ₃ NO ₃	65.1	4.8	3.2
(9f)	Pyridine	<i>p</i> -MeČ₄H₄	₽-MeČ _s H _s	87	EtOH-H ₂ O	Yellow microcrystals	9799 (decomp.)	77.8	6.8	3.4	C ₁₀ H ₁₇ NÖ ₃	77.8	6,8	3.5
(10)	Pyridine <i>f</i>	Ph	Ph	90	MeOH	Yellow needles	9192	76.8	5.7	3.8	C ₂₂ H ₂₁ NO ₂	76.9	5.9	3.9
(12a)	2-Picoline	Ph	Ph	70	EtOH	Yellow needles	103104	77.1	6.4	3.5	C ₃₅ H ₃₅ NO ₃	77.5	6.5	3.6
(13a)	Isoquinoline	Me	Ph	75	Me ₂ CO-H ₂ O	Yellow prisms	120	76.4	6.4	3.7	C ₃₃ H ₃₃ NO ₃	76.4	6.4	3.9
(13b)	Isoquinoline	Ph	Ph	65	EtOAc	Yellow needles	138	79.2	5.9	3.3	C ₃₆ H ₃₅ NO ₃	79.4	6.0	3.3
(13c)	Isoquinoline	Ph	p-MeOC ₆ H ₆	78	Me _s CO–H _s O	Yellow prisms	109	76.5	5,9	3.0	C ₁₁ H ₁₇ NO ₄	7 6 .8	6.0	3.1
(13d)	Isoquinoline	Ph	p-NO ₂ C ₆ H	55	Me _s CO-H _s O	Yellow prisms	136	71.8	5.0	5.9	C ₁₆ H ₁₄ N ₁ O ₅	71.8	5.2	6.0
(13e)	Isoquinoline	Ph	2-F c	44	MesCO-HsO	Yellow prisms	114	7 6 .0	5.7	3.3	C ₃₄ H ₃₃ NO ₄	75.5	5.6	3.4
(13f)	Isoquinoline	2-T ø	Ph	87	Me ₂ COH ₂ O	Yellow prisms	138	72.8	5.4	3.2	C34H30NO3SA	72.7	5.4	3.3
(13g)	Isoquinoline	p-CIC₄H₄	p-CIC ₆ H ₆	33	Me _s CO-H ₂ O	Yellow prisms	128	68.4	4.8	2.8	C ₁₆ H ₁₁ Cl ₁ NO ₁	68.3	4.7	2.8
(13h)	Isoquinoline	p-MeC _e H _e	p-MeC _e H _e	67	EtOH	Yellow plates	139	79.6	6.4	3.0	C ₂₀ H ₂₉ NO ₂	79.8	6.5	3.1
(16a)	[*H ₅]Pyridine <i>f</i>	Ph	Ph	90	MeOH	Yellow needles	8788	75.7		3.8	C ₃₃ H ₁₆ ³ H ₄ NO ₃	75.8		3.8
a De	anared by general	mothod (a)	A Found: CL 88	Pear	ired: Cl 8 79/	49 F - 9 Fueul	4 Hyperosco	nie H (0	n in en	ectra Found Cl	16.3	Rea	horized

• Prepared by general method (a). • Found: Cl, 8.8. Required: Cl, 8.7%. • 2-F = 2-Furyl. • Hygroscopic, H₂O seen in spectra. • Found: Cl, 16.3. Required: Cl, 16.0%. f Methoxycarbonymethyl salt. • 2-T = 2-Thienyl. • Found: S, 7.6. Required: S, 7.5%. • Found: Cl, 14.5. Required: Cl, 14.4%.

TABLE 3

Adducts from cyclic 1-(carbamoylmethyl)azonium salts a

		αβ-Unsatu R 4CO	rated ketone CH=CHR *	Yield	Cryst.				Found			Rr	auire	d
Adduct	Heterocycle	R ¹	R*	(%)	solvent	Cryst. form	М.р. (°С)	С	Н	N	Formula	c	H	N
(11a)	Pyridine	Ph	Ph	90	MeOH-H.O	Yellow prisms	147	76.4	6.1	8.1	CHN.O.	76.7	5.9	8.1
(11b)	Pyridine	Ph	p-CIC_H	74	EtOH	Yellow prisms	145146	69.6	5.0	7.3	C.H.CIN.O.	69.7	5.1	7.4
(11c)	Pyridine	2-Furvl	Ph	70	EtOH	Yellow prisms	139140			8.0	C. H. N.O.			8.4
(11d)	Pyridine	p-CIC H	<i>p</i> ·CIC _a H _a	70	EtOH	Yellow plates	146-147	64.1	4.4	6.7	C. H. Cl.N.O. d	63,9	4.4	6.8
(11e)	Pyridine	p-MeC.H.	p-MeČ,H,	86	EtOH	Yellow plates	146147	77.4	6.6	7.5	C.H.N.O.	77.4	6.5	7.5
(14a)	Isoquinoline	Ph	Ph	90	EtOH-H ₃ O	Yellow	110112	79.1	5.6	6.6	C _{se} H _{ss} N _s O _s	79.2	5.6	7.1
(14b)	Isoquinoline	Ph	p-CIC ₄ H ₄	90	EtOH	Flat yellow needles	151-152.5	71.0	5.7	5.9	C ₂₄ H ₂₃ CIN ₂ O ₃ · EtOH e	70.8	5.7	5.9
(14c)	Isoquinoline	2-Furvl	Ph	90	EtOH	Yellow needles	186			6.9	C.H.N.O.			7.3
(14d)	Isoquinoline	p-CIC.H.	p-CIC.H.	90	EtOH	Yellow needles	165167	67.1	4.3	6.0	C.H.Cl.N.O./	67.4	4.4	6.0
(14e)	Isoquinoline	p-MeC.H.	p-MeC.H.	90	McOH-H ₂ O	Yellow microcrystals	105108	79.0	6.2		C ₁₀ H ₁₀ N ₂ O ₁ ·	78.8	6.3	
(16b)	[*H ₅]Pyridine	Ph	Ph	90	MeOH-H ₂ O	Yellow prisms	155157	75.6		7.9	C, H, H, N,O,	75.6		8.0
a Dropa	red by general me	thad (b) A Lit	m n 147	°C (rof 9) c Found: C	193 Required C	0 4 9/ A E	· hau	CH 17	9 T	Paguirad, Cl 17.90		nontro	chor

* Prepared by general method (b). * Lit., m.p. 147-148 °C (ref. 2). * Found: Cl, 9.3. Required: Cl, 9.4%. * Found: Cl, 17.2. Required: Cl, 17.2%. * Spectra show EtOH. Found: Cl, 7.6. Required: Cl, 7.5%. / Found: Cl, 15.3. Required: Cl, 15.3%. * Hygroscopic.

TABLE 4

Adducts from 1-(cyanomethyl)isoquinolinium salts a

	αβ-Uns R ¹ C	aturated ketor OCH=CHR ²	ne Yield			J	Found			Re	eauire	d
Adduct	R1	R²	%	Cryst. form ^b	M.p. (°C)	С	H	N	Formula	С	H	N
(15a)	Me	Ph	4	White microcrystals	165	77.8	5.5	8.7	$\mathrm{C_{21}H_{18}N_{2}O}$	80.2	5.8	8.9
(15b)	$\mathbf{Bu^t}$	\mathbf{Ph}	34	White needles	147	81.0	6.8	7.9	C.,H.,N.O	80.9	6.8	7.9
(15c)	Ph	Ph	42	Yellow micro- crystals	184-185			7.4	C ₂₆ H ₂₀ N ₂ O			7.4
(15d)	Ph	p-MeOC _a H ₄	47	Yellow plates	67	79.8	5.3	6.9	C.,H.,N.O.	79.8	5.5	6.9
(15e)	\mathbf{Ph}	p-NO ₂ C ₆ H ₄	52	Yellow needles	190	74.1	4.4		C ₂₆ H ₁₉ N ₃ O ₃	74.1	4.5	

" Prepared by general method (c). " From EtOH.

with $\alpha\beta$ -unsaturated ketones to give the adducts (15a—e) in moderate to low yield (Table 4). Salts (7i and j) were formed by reaction of pentadeuteriated pyridine with methyl chloroacetate and with chloroacetamide. Reactions of these salts with chalcone gave

the expected adducts (16a and b), in which the deuterium label was fully retained.

Spectra of the Tetrahydroindolizines.—The i.r. and n.m.r. spectra of the adducts (9a—f), (10), (11a—e), (12a), and (16a and b) derived from pyridinium salts are

$$\begin{array}{c} \left(3\right) \ a; R = H, Z = CO_2EI, X = Br \\ b; R = H, Z = CO_2EI, X = Br \\ b; R = H, Z = CO_2H, X = CI \\ c; R = H, Z = CO_2H, X = CI \\ c; R = H, Z = CO_2H, X = CI \\ c; R = H, Z = CO_2H, X = CI \\ c; R = H, Z = CO_2H, X = CI \\ c; R = H, Z = CO_2H, X = Br \\ e; R = 3 - Me, Z = CO_2EI, X = Br \\ e; R = 3 - Me, Z = CO_2EI, X = Br \\ e; R = 3 - Me, Z = CO_2EI, X = Br \\ c; R = 4 - Me, Z = CO_2EI, X = Br \\ c; R = 4 - Me, Z = CO_2EI, X = Br \\ c; R = 4 - Me, Z = CO_2EI, X = Br \\ c; R = 4 - Me, Z = CO_2H, X = CI \\ d; R = g = quinolinium, Z = CONH_2, X = CI \\ g; R = 2 - Me, Z = CONH_2, X = CI \\ g; R = 2 - Me, Z = CONH_2, X = CI \\ f; R = 2, 3, 4, 5, 6 - penta^{-2}H, Z = COME, X = CI \\ j; R = 2, 3, 4, 5, 6 - penta^{-2}H, Z = COME, X = CI \\ j; R = 2, 3, 4, 5, 6 - penta^{-2}H, Z = COME, X = CI \\ p; R = 2, 3, 4, 5, 6 - penta^{-2}H, Z = COME, X = CI \\ cog_{E} = R^2 \\$$

TABLE 5

ı salts
pyridiniun
from
derived
8
adducts
of
spectra
n.m.r.
Ηı
and
L.r.

		8	e7)	•	•••	63	•	•••	e7	er)		,	ers	••	e7	••	63	4
		J J	9.5	9.5	æ	9.5	6	8	9.5	9.5			5	10	2	9.5	10	1 2-F
	itants	J	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5		,	5.5	5.5	5.5	5.5	5.5	Br.
	ug cons	J 6, 4	2	-	-	7	-	2		-			-	-	-	-	2	In CH
	ouplin	J	8	6.5	6.5	9	8	9	÷	8	9	2	2	~	-	-	-	ts. k
	с С	J	6	8.5	6	6	8.5	6	6	6			·	. 49	6	•••	• 4 2	triple
		J	6	80	6	6	80	6	8.8	6	6	6	6	6	80	œ	æ	let of
	Other	CH,	l.25 e	l.28 e	l.25 c	l.25 c	l.28 e	l.26 ¢	1.28 0									qoop
		Ë,	-		241	-		31,1	108								29, 20,	Double
		, Arc			ণ			~ ~	1	-							લું અં	р. јI
		OCH	•		•					3.79	3.73							overla
		OCH.	4.23 /	4.22 /	4.197.	4.20 f	4.22 f.	4.21 r	4.245									ue to
		tic.	P.4 8.	7.8 Å.e	.9 h,s	.6 Å,w	8 h.u	.8' A .u	P.4 8.1	P.4 8.	P.A 8.	P. 8 A.g.	7.9 A.F	1.9 h.s	1.0 A.w	8.0 A.w	.7 A.w	able d 8 H.
,		Vroma	7.1-7	1.1-1	7.0-7	6.9-7	7.1-7	.957	7.1-1	7.2-7	7.1-7	7.1-7	1.1-	11	7.0-8	7.1-8	70-2	nguish:
•		H	5 A.I	15 A,4	5 A,1	5 A,f	, Å, ś	4 h.f 6	6 Å,i	3 d. f			15 A,f	15 Å,i	h ,t	, Y C	¥' (distir ' Sing
		8a-	f.h 4.8	J.A 4.8	f.h 4.8	h 4.8	ň 4.8	(.h 4.8	A 4.8	A 4.8			A 4.7	Å 4.7	h 4.7	Å 4.7	4 .7	¢ Not 9 H.
		8-H	4.97	4.97	4.95	5.03	4.94	4.95)	5.01	5.00			4.91	4.90	4.90	4.92	4.90	iplet.
•		H-7	5.881	5.87 4	5.854	5.88 /	5.89 /	5.84 <i>j</i>	5.81 /	5.89 /			5.86 /	5.87 J	5.851	5.87 /	5.85 j	A Mult Quart
-		H	75 A.f	75 A.f	75 A, i	75 A.C	3 A,4	75 A.f	57 A.f	79 4,5			7 h.i	7 A.6	6 A,t	65 A,i	65 Å,i	H.
		-9 1	9 4.	9 4.	9 4.	4	s 4.8	4	4	9			6 4 .	4.	9 4.	9	4	f tripl g 10
		5-E	J 6.10	J 6.09	J 6.08	J 6.09	J 6.09	6.08		6.10	_		6.23	6.24	6.18	6.24	6.22	iblet o
		3-H	4.23 e	4.15 0	4.19 c.	4.20 c,	4.14 0,	4.19 c,	4.24 0	4.25 e	4.23 •	4.18	4.21 e	4.19 0	4.11 0	4.17 0	4.16 •	Do CD CD
1		2-H	3.92 d	3.92 d	3.91 d	3.91 d	3.89 d	3.92 đ	3.88 d	3.94 d	3.92 d	3.81 d	3.88 d	3.84 d	3.78 d	3.84 d	3.84 đ	t. 🍠
		H	4 b.c	8 b.c	5.0	1 b.e.f	1 6,6	5 P.e	3 bec	5 6.0	3 6,0	8 e.p	9	đ.)) d, p	9:5	e	als ove adduc
		 0	4.5	4.4	4.55	4	4.4	4.5	4.4	4.5	4.5	4.5	4.7	4.7	4.4	4.6	4.6	<i>f</i> Signariated
		Š	1 64(1 63(1 635	1 610	1 625	1 610	1 64(1 63(1 60	1 600	1 590	1 64 C	1 600	1 590	1 610	blet. adeute
		ନ	1 675	1 675	1 665	650	1 675	670	1 670	1 670	1 670	1665	1660	1 660	1 640	1 650	650	Pent
		ູ້	735 ¢	735 a	30.4	30 .	30 ¢	35 .	740 a .	40 #	740 a	380 a	# 08	80 a]	85 a]	395 k	00 .	blet.
			-	-	-	1	-	-	-	-	-	Ä	ī	16	- -	-	• 13	le dou KBr d
		R 1		CIC.H	MeC.F		CIC.H.	MeC.H				_		CIC.H.		CIC.H.	MeC,H	Doub As a
			đ	¢	÷	L d	÷	4	đ	: d	L L	枮	E.	4	,d	\$		let. d alt. ,
		8					IC.H.	leC.H								IC.H.	leC H	e Trip nium s
			Чd	ď	f	2-F	4	4	đ	4	Ч	ЧЧ	4 L	4 H	2-F	4	4-N	DCI.
									E.			••					·	h In Cl the 2-
		×	CO.E	CO.E	E C	19.00 19.00	E C	CO.E	C.F.	N CO	CO.M	CONF	CONF	CONF	CONF	CONF	CONF	Ijol.
		luct	(P	16	7) (17	50	(*	à -	(F	<u>م</u>		2	17	F	ۍ (In N.
		Add	3 <u>6</u>)	6	6	6	đ	5	(195	10	16	(161	(II)	E	ili,	<u>ji</u>	(11	Fur

TABLE 6

I.r. and ¹H n.m.r. spectra of adducts (9) derived from isoquinolinium salts

Adduct (13a)	X CO _z Et	R Me	R¹ Ph	v(C=O) 1 740 b 1 715	ν(C=C) 1 620	1-Н 4.05 с,đ	2-Н 3.85 d	3-H ø 4.32	5-H a 6.28	6-На 5.58	10b-H a 5.00	Aromatic 6.77.4 n.o	Others (2 H) 3.68 p	Methyl groups 2.12,9	J1,2 8.5	J 1,10b 8.5	J _{2,3} 9	J 5, 6 7
(13b) (13c)	CO ₂ Et CO ₂ Et	Ph Ph	Ph p-MeOC _e H	1 735 b 1 665 1 750 b 1 680	$1630 \\ 1615$	4.72 c,đ 4.69 c,đ	3.87 đ 3.85 đ	4.37 4.35	6.45 6.45	$5.63 \\ 5.62$	5.20 5.19	6.87.8 n,t 6.67.9 n,s	3.70 đ 3.75 đ	0.80 d 3.72,9	8.5 8	9 9	9 9	7.5 7
(13d) (13e) (13f) (13g) (13h)	CO_Et CO_Et CO_Et CO_Et CO_Et	Ph Ph 2-T <i>p</i> -CIC _e H <i>p</i> -MeC _e H	p-NO ₂ C ₆ H ₄ 2-F f Ph p-CIC ₆ H ₄ p-MeC ₆ H ₄	1 733 b 1 665 1 740 b 1 665 1 745 b 1 650 1 732 b 1 670 1 755 b 1 670	1 630 1 615 1 615 1 630 1 615	4.68 c,đ 5.00 đ,g 4.55 c,đ 4.58 c,đ 4.71 c,đ	3.94 d 4.15 d 3.94 d 3.82 i 3.87 d	4.42 4.40 4.38 4.34 4.36	6.48 6.27 6.40 6.44 6.44	5.68 5.55 5.62 5.64 5.62	5.20 5.29 5.24 5.16 5.21	6.88.5 n,s 6.07.9 n,t 6.67.7 n,t 6.77.75 n,t 6.67.75 n,t	3.80 p 3.95 p 3.70 p 3.75 p 3.72 p	0.84 d 1.00 d 0.78 d 0.86 d 2.24,9 2.35,9 0.82 d	7 8.5 8.5 8.5 8	9 9 8.5 8.5	9 9 9	8 7 7.5 7.5
(14a) (14b) (14c)	CONH CONH CONH	Ph Ph 2-F f	Ph p-ClC _e H _e Ph	1 680 j 1 680 b 1 670 1 665 j 1 655	1 610 1 630 1 615	4.74 c,d 4.67 e,d 4.78 c,d	3.92 d 3.93 d 3.99 d	4.18 4.17 4.32	6.32 6.35 6.37	$5.65 \\ 5.73 \\ 5.48$	$5.14 \\ 5.12 \\ 5.08$	6.67.8 n.r 6.557.85 n.s 6.67.8 n.t	6.20 q 6.04 q 6.6 7.8 i	0.02 4	9 9 9	8.5 8.5 9	9.5 9.5 9	7 7.5 7.5
(14d) (14e)	CONH ₂ CONH ₂	p-ClC ₄ H ₄ p-MeC ₄ H ₄	p-CIC _e H _e p-MeC _e H _e	1 690 b 1 670 1 670 j	1 630 1 610	4.62 d,g 4.72 c,d	3.92 d 3.96 d	4.24 4.22	6.40 6.34	$5.46 \\ 5.67$	$5.01 \\ 5.12$	6.67.9 n,t 6.67.9 n,t	6.00 g	2.32, 9	10 9	10 9	9.5 9.5	7.5 7
(15a) (15b) (15c) (15d) (15e)	CN CN CN CN CN	Me But Ph Ph Ph	Ph Ph p-MeOC ₅ H ₄ p-NO ₅ Ph	1 705 b,k 1 690 b.k 1 670 b,k 1 620 b.k 1 670 b,k	1 630 1 625 1 630 1 615 1 630	4.08 c,e 4.13 c,e 4.64 d.1 4.70 c,d m	3.72 e 3.53 e 3.81 d 3.84 b	4.84 4.67 4.60 4.62	6.07 6.53 6.45 6.46	5.38 5.67 5.68 5.72	5.55 4.77 5.10 5.17	7.17.4 n,0 6.87.4 n,0 7.07.6 n,s 6.67.8 n,s		1.75 g 0.71 o,g 3.76 g	6 7.5 8 8.5	8.5 9.3 8.5 8.5	8 8.5 8 8.5	7.5 7.5 7.5 7.5
(17) a Do j In N	COPh oublet. b I ujol. k v(C	Ph n CHBr ₃ . ¢] (≂N) 2 250 cm	Ph In CDCl ₃ . d -1. l In CCl	1680 b 1670 Triplet. c Dou . m Insufficien	1 615 ble doul tly solul	4.66 c,c olet. 12- ole to reco	$\begin{array}{l} 3.92 \\ F = 2 \\ F \\ ord. \\ n \end{array}$	5.23 ⁷ uryl. 4 Multiple	6.46 7 In (CD t. ∘9 H	5.68 ••••••••••••••••••••••••••••••••••••	5.34 DCl3. h artet. g	6.7 - 7.8 n, u 2 - T = 2 - Thier Singlet. $r = 14$	iyl. ≮C H. ¢1	bscured	7 by ov 12 H.	8 verlapp w 19	8 ing si H.	7 ignal s

given in Table 5, and of those (13a—h), (14a—e), and (15a—e) from isoquinolinium salts in Table 6. All adducts (9)—(16) had a strong ketone v(C=O) 1 640— 1 715 cm⁻¹: the methyl ketones gave rise to highest values of v(C=O), and the highly conjugated furyl and thienyl ketones to the lowest. The ester adducts (9a—e), (10), (12a), and (13a—h) had also an ester v(C=O) 1 735—1 750 cm⁻¹, whilst the amides (11a—e) and (14a—e) had an amide v(C=O) 1 660—1 680 and variable v(NH₂) 3 100—3 500 cm⁻¹, and the nitrile adducts (15a—e) had v(C=N) 2 250 cm⁻¹.

The ¹H n.m.r. spectra of the adducts (9)—(12) from pyridinium salts were assigned on the basis of the 220 MHz spectrum of the methyl ester adduct with chalcone (10). The phenyl protons gave a 8 H multiplet at δ 7.2—7.6 and a 2 H doublet at δ 7.81, whilst the CO₂Me gave a 3 H singlet at 8 3.79. 3-H and 5-H, each having only one CH neighbour, gave doublets, all other protons giving double doublets. Deshielding by N caused 5-H and 7-H to appear at lowest field, δ 6.10 and 5.89. The signals from 6-H and 8a-H overlapped, but were distinguishable. The olefinic coupling constants $J_{5.6}$, $J_{6.7}$, $J_{7.8}$, respectively 7, 5.5, and 9.5 Hz, are normal values. Long range coupling, $J_{5.7} \approx J_{5.8} \approx J_{6.8} \approx$ $J_{6.8a} \approx 1$ Hz, caused the signals of 5,7,8-H to be split into fine triplets, and those of 6,8a-H into fine doublets. The small $J_{8,8a}$ (3 Hz) is a consequence of the constraint of 8a-H away from the plane of the diene.

Although the large $J_{1,2}$ (9 Hz) could indicate structure (10a) in which 1-H is *cis* to 2-H, it is more likely that the phenyl and phenacyl substituents of the dipolarophile remain *trans* to each other in the adduct as in structure (10b). In (10b), steric repulsions between the phenyl groups probably keep the dihedral angle of the protons 1-H and 2-H near 180°, giving rise to a large vicinal coupling.

The off-resonance 13 C n.m.r. spectrum of (10) provided additional confirmation of the tetrahydroindolizine structure. The ketone and ester carbonyls gave singlets at δ 197.9 and 172.1 respectively, the quaternary aromatic carbons appeared as singlets at δ 141.1 and 137.4, and the remaining aromatic carbons as a series of doublets between δ 133.3 and 127.3 p.p.m. The olefinic carbons C-5, C-7, C-8, and C-6 appeared respectively as doublets at δ 135.2, 124.1, 115.0, and 95.7, whilst the aliphatic carbons C-8a, C-3, C-1, and C-2 gave higher field doublets at δ 72.8, 64.7, 62.4, and 49.7, and the methyl carbon resonated as a quartet at δ 52.4 p.p.m. The pentadeuteriated adduct (16a) gave a ¹H n.m.r. spectrum which contained only the aromatic and methyl signals, plus 3-H (a 6 Hz doublet), 1-H (a 9 Hz doublet), and 2-H (a 6 and 9 Hz double doublet), thus confirming the assignment of these protons in adduct (10).

In the spectrum of the corresponding amide adduct (11a) (Thesing's intermediate) 2-H, 3-H, 5-H, 7-H, and 8-H gave signals almost identical to those of (10), but 6-H, 8a-H, and 1-H were obscured by mutual overlap. The pentadeuteriated amide adduct (16b) showed 1-H as a 9 Hz doublet, and 2-H and 3-H as a doublet and double doublet respectively, confirming that the amide adduct had an analogous structure to the ester (10). All the other adducts (9) and (11) also gave similar δ and J values (Table 5), indicating their common regio- and stereo-chemistry. The adduct (12a) from the 2-pico-linium salt (7d) gave a spectrum from which the 5-H signal was absent.

The ester, amide, and nitrile adducts (13a-h), (14a-e), and (15a-e) derived from isoquinolinium salts all gave similar ¹H n.m.r. spectra, in which the isolated vinyl protons 5-H and 6-H gave low field doublets at δ 6.4 and 5.6 ($J_{5.6}$ 7-8 Hz); 3-H and 10b-H appeared at δ 4.4 and 5.2 (as 9-10 Hz doublets). In this series, $J_{1.2}$ varied between 6 and 10 Hz, thus giving 1-H and 2-H as either triplets or double doublets, at δ 4.6 and 3.9. The chemical shifts and coupling constants in the pyrrolidine ring of adducts (13)-(15) are very similar to those of adducts (9)-(11), indicating a similar regio-and stereo-chemistry of addition to the isoquinolinium ylides, as to the pyridinium ones.

The mass spectra of adducts (9a) and (11a) showed

weak molecular ions (1%), with larger peaks at M-2(8%) and M - 4 (10%), resulting from dehydrogenations to the dihydroindolizine and indolizine. The base peaks were 77 (Ph⁺) or 105 (PhCO⁺), and ions at m/e 207 and 208 (chalcone) were prominent, indicating retro-cycloaddition to be the major fragmentation pathway.

Other Examples in the Literature.—The reaction of 2phenacylisoquinolinium bromide (8d) with chalcone and sodium hydroxide is reported ⁹ to give an ylide analogous to (1). We have found that the spectra of this compound (Table 6) are, however, in accord with the structure (17). In this adduct 3-H resonates at 1 p.p.m. lower field than in (13)—(15): all other signals are similar. We would similarly expect the ylide reported ¹⁰ to arise from the reaction of 1-(carbamoylmethyl)pyridinium chloride with 4-picolylideneacetophenone and sodium hydroxide to be of the structural type (11).

Mechanism of Formation of Tetrahydroindolizines.— The adducts (9)—(17) could possibly be formed by a concerted cycloaddition,³ but it is more probable that the carbonyl-stabilised cyclic azonium methylide undergoes a Michael addition onto the chalcone, giving a reactive enolate (18), which rapidly ring-closes onto the heterocyclic ring to give the bicyclic adduct (Scheme 2). This is in agreement with the observed regiospecificity of addition, and the acid-base mediated interconversion with the open-chain salt which has been reported⁸ for similar tetrahydroindolizines.

EXPERIMENTAL

M.p.s were determined with a Reichert apparatus. Spectra were recorded with a Perkin-Elmer 297 grating spectrophotometer, a Kratos MS 25 mass spectrometer, and a Varian HA-100 (100 MHz) n.m.r. spectrometer. The 220 MHz n.m.r. spectrum was obtained from the PCMU, Harwell

General Procedures for Preparation of Cyclic Azonium Salts.—(a) The heterocycle (0.2 mol), α -bromocarbonyl compound (0.2 mol), and EtOAc (25 ml) were stirred together and left overnight, and the salt was filtered off as a white powder which was crystallised from ethanol.

(b) The heterocycle (0.2 mol), methyl chloroacetate (0.2 mol), and EtOAc (50 ml) were heated at 80 °C for 20 h. The salt was filtered off as a white powder, and crystallised from EtOH.

(c) The heterocycle (0.2 mol), chloroacetamide (0.2 mol), and MeCN (20 g) were heated together at 80 °C for 48 h. The salt was filtered off as a white powder, which was crystallised from EtOH.

(d) The heterocycle (0.2 mol), chloroacetonitrile (0.2 mol), and Me₂CO (50 ml) were heated under reflux for 4 h. The salt was filtered off as a white powder, which was crystallised from EtOH.

General Procedures for Preparation of Tetrahydroindolizines.—(a) The cyclic N-(alkoxycarbonylmethyl)azonium salt (10 mmol), and the $\alpha\beta$ -unsaturated ketone (10 mmol) were dissolved together in the alcohol corresponding to the ester function in the salt (30 ml), at 25-60 °C and a solution of sodium (10 mmol) in the same alcohol (5 ml) added. The solution became orange and the product crystallised rapidly, especially after seeding. After 30 min, water (10 ml) was added to remove inorganic salts, and the adduct filtered off to give yellow microcrystals which were washed with water (10 ml).

(b) the N-(aminoformylmethyl)azonium salt (10 mmol) and the $\alpha\beta$ -unsaturated ketone (10 mmol) were dissolved in MeOH (30 ml) at 25 °C and 1M aqueous NaOH (10 ml) was added. Further water was added and the precipitate scratched as required to produce the crystalline adduct as a yellow powder. The adducts were crystallised from EtOH.

(c) To a stirred suspension of 1-(cyanomethyl)isoquinolinium chloride (2.5 mmol) and the $\alpha\beta$ -unsaturated ketone (2.5 mmol) in EtOH (15 ml) at 25 °C was added dropwise 1M aqueous NaOH (2.5 mmol), and the resulting solution stirred for 2 h. Water (4 ml) was added and the adduct filtered off a yellow powder, which was purified by chromatography on alumina (Me₂CO).

1,3-Dibenzoyl-1,2,3,10b-tetrahydro-2-phenylbenzo[g]-

indolizine (17).-2-Phenacylisoquinolinium bromide was condensed with chalcone as described ⁹ to give the adduct as small yellow needles, m.p. 154-156 °C (lit., 154-156 °C).

[0/1089 Received, 10th July, 1980]

REFERENCES

¹ A. R. Katritzky, J. Arrowsmith, Zakaria bin Bahari, C. Jayaram, T. Siddigui, and S. Vassilatos, J. Chem. Soc., Perkin Trans. 1, 1980, 285

J. Thesing and A. Müller, Chem. Ber., 1957, 90, 711.

 ³ R. Huisgen, Angew. Chem., 1963, 75, 604.
⁴ V. Boekelheide and K. Fahrenholtz, J. Am. Chem. Soc., 1961, **83**, 458.

⁵ C. A. Henrick, E. Ritchie, and W. C. Taylor, Aust. J. Chem., 1967, 20, 2467.

A. Kakehi and S. Ito, Bull. Chem. Soc. Jpn., 1974, 47, 938.

J. Fröhlich and F. Kröhnke, Chem. Ber., 1971, 104, 1621.

⁸ J. Curtze, R. Dach, K. H. Duchardt, and F. Kröhnke, Chem. Ber., 1979, 112, 2197.

W. Zecher and F. Kröhnke, Chem. Ber., 1961, 94, 690. 10 F. Kröhnke, K.-E. Schnalke, and W. Zecher, Chem. Ber.,

1970, 103, 322.